-
M. Kefalas, M. Baratchi, A. Apostolidis, D. van den Herik and T. Bäck, “Automated Machine Learning for Remaining Useful Life Estimation of Aircraft Engines,” 2021 IEEE International Conference on Prognostics and Health Management (ICPHM), 2021, pp. 1-9, doi: 10.1109/ICPHM51084.2021.9486549.
-
M. Kefalas, M. Koch, V. Geraedts, H. Wang, M. Tannemaat and T. Bäck, “Automated Machine Learning for the Classification of Normal and Abnormal Electromyography Data,” 2020 IEEE International Conference on Big Data (Big Data), 2020, pp. 1176-1185, doi: 10.1109/BigData50022.2020.9377780.
-
V. D. Nguyen, M. Kefalas, K. Yang, A. Apostolidis, M. Olhofer,and S. Limmer, “A Review: Prognostics and Health Management inAutomotive and Aerospace,” p. 35.
-
Marios Kefalas, Steffen Limmer, Asteris Apostolidis, Markus Olhofer, Michael Emmerich, and Thomas Bäck. 2019. A tabu search-based memetic algorithm for the multi-objective flexible job shop scheduling problem. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO ‘19). Association for Computing Machinery, New York, NY, USA, 1254–1262. DOI:https://doi.org/10.1145/3319619.3326817
-
A. Maulana, M. Kefalas and M. T. M. Emmerich, “Immunization of networks using genetic algorithms and multiobjective metaheuristics,” 2017 IEEE Symposium Series on Computational Intelligence (SSCI), 2017, pp. 1-8, doi: 10.1109/SSCI.2017.8285368.
-
Multiple Node Immunisation for Preventing Epidemics on Networks by Exact Multiobjective Optimisation of Cost and Shield-Value
-
Geraedts, V.J., Koch, M., Kuiper, R., Kefalas, M., Bäck, T.H., van Hilten, J.J., Wang, H., Middelkoop, H.A., van der Gaag, N.A., Contarino, M.F. and Tannemaat, M.R. (2021), Preoperative Electroencephalography-Based Machine Learning Predicts Cognitive Deterioration After Subthalamic Deep Brain Stimulation. Mov Disord, 36: 2324-2334. https://doi.org/10.1002/mds.28661
-
Marios Kefalas, Juan de Santiago Rojo, Asteris Apostolidis, Dirk van den Herik, Bas van Stein, and Thomas Bäck. Explainable Artificial Intelligence for Exhaust Gas Temperature of Turbofan Engines. Journal of Aerospace Information Systems, pages 1–8, 2022. Publisher: American Institute of Aeronautics and Astronautics eprint: https://doi.org/10.2514/1.I011058
-
F. Yang, M. Kefalas, M. Koch, A. V. Kononova, Y. Qiao and T. Bäck, Auto-REP: An Automated Regression Pipeline Approach for High-efficiency Earthquake Prediction Using LANL Data, 14th International Conference on Computer and Automation Engineering (ICCAE), 2022, pp. 127-134. doi:https://doi.org/10.1109/ICCAE55086.2022.9762437
-
Marios Kefalas, Bas van Stein, Mitra Baratchi, Asteris Apostolidis, and Thomas H.W. Bäck, “An End-to-End Pipeline for Uncertainty Quantification and Remaining Useful Life Estimation: An Application on Aircraft Engines, 7th European Conferenceof the Prognostics and Health Management Society (PHME22), 2022. PHM Society.DOI:https://doi.org/10.36001/phme.2022.v7i1.3317
-
Martijn R. Tannemaat, Marios Kefalas, Victor J. Geraedts, Linda Remijn-Nelissen, Anna Verschuuren, Milan Koch, Anna V. Kononova, Hao Wang, and Thomas H.W. Bäck, “Distinguishing normal, neuropathic and myopathic EMG with an automated machine learning approach”, Clinical Neurophysiology, pages 1-17, 2022. Elsevier
-
Michael Emmerich, Yulian Kuryliak, Dmytro Dosyn, Ksenia Pereverdieva, Joost Nibbeling and Marios Kefalas, “Multi-objective Targeted Immunization: Non-backtracking vs. Adjacency Matrix”, 15th Workshop on Global Optimization (HUGO 2022), pages 1-4, 2022. International Society of Global Optimization.